
 Dual superconformal invariance, momentum twistors and Grassmannians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)045

(http://iopscience.iop.org/1126-6708/2009/11/045)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:32

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/045/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
4
5

Published by IOP Publishing for SISSA

Received: September 15, 2009

Accepted: October 23, 2009

Published: November 10, 2009

Dual superconformal invariance, momentum twistors

and Grassmannians

Lionel Masona and David Skinnera,b

aMathematical Institute,

24-29 St. Giles’, Oxford, OX1 3LB, United Kingdom
bPerimeter Institute for Theoretical Physics,

31 Caroline St., Waterloo, ON, N2L 2Y5, Canada

E-mail: lmason@maths.ox.ac.uk, dskinner@perimeterinstitute.ca

Abstract: Dual superconformal invariance has recently emerged as a hidden symmetry

of planar scattering amplitudes in N = 4 super Yang-Mills theory. This symmetry can be

made manifest by expressing amplitudes in terms of ‘momentum twistors’, as opposed to

the usual twistors that make the ordinary superconformal properties manifest. The relation

between momentum twistors and on-shell momenta is algebraic, so the translation proce-

dure does not rely on any choice of space-time signature. We show that tree amplitudes

and box coefficients are succinctly generated by integration of holomorphic δ-functions in

momentum twistors over cycles in a Grassmannian. This is analogous to, although distinct

from, recent results obtained by Arkani-Hamed et al. in ordinary twistor space. We also

make contact with Hodges’ polyhedral representation of NMHV amplitudes in momentum

twistor space.

Keywords: Supersymmetric gauge theory, Duality in Gauge Field Theories

ArXiv ePrint: 0909.0250

c© SISSA 2009 doi:10.1088/1126-6708/2009/11/045

mailto:lmason@maths.ox.ac.uk
mailto:dskinner@perimeterinstitute.ca
http://arxiv.org/abs/0909.0250
http://dx.doi.org/10.1088/1126-6708/2009/11/045


J
H
E
P
1
1
(
2
0
0
9
)
0
4
5

Contents

1 Introduction 1

2 Momentum twistors and dual conformal invariance 3

2.1 Basics of twistor geometry 4

2.2 Translating the dual superconformal invariants 9

2.3 Rt;rs as linear dependence of five momentum supertwistors 11

2.4 Real twistor formulations 13

3 Grassmannians and momentum twistors 14

4 Examples of contours 17

4.1 NMHV 3-mass and 2-mass-hard box coefficients 17

4.2 NMHV tree amplitudes 19

4.3 Second-order invariants for N2MHV amplitudes 21

4.4 The four-mass box coefficient 24

4.5 All-loop information 27

4.6 MHV amplitudes 28

5 Polytopes 28

6 Discussion 32

A Higher-order invariants 34

1 Introduction

Dual superconformal symmetry has emerged as a powerful tool in the study of planar

N = 4 super Yang-Mills theory, providing stringent constraints on the structure of the

scattering amplitudes [1]. This symmetry group has the same PSU(2, 2|4) structure as the

standard superconformal group, but acts on ‘region momentum space’ (differences between

two region momenta are the momenta of the particles in the scattering process), as opposed

to ordinary Minkowski space. It is a hidden symmetry that may be viewed [2] as part of

the Yangian structure of N = 4 SYM [3] predicted by AdS/CFT [4].

The MHV and six particle NMHV tree amplitudes were shown to be covariant under

dual superconformal transformations in [1] (the MHV prefactor having weight under dual

special conformal transformations) and this was generalised to all tree amplitudes in [5]. A

systematic exploitation of both dual superconformal invariance and the BCFW recursion

relations [7, 8] then led to an explicit solution [6] for all N = 4 SYM trees. Although planar
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loop amplitudes are not thought to be directly invariant, the anomalous variation has a

well-defined form [1, 9], so dual conformal invariance also imposes tight restrictions on the

structure of loop amplitudes. In particular, it is consistent with the BDS conjecture [10]

(believed to be valid for four and five particles). Exact dual superconformal invariance

has been explicitly confirmed for the coefficients of 1-loop box coefficients [5] (see also [11,

12]), while the anomalous dual conformal (though not dual superconformal) symmetry has

been verified for the 1-loop NMHV amplitudes themselves in [13, 14] and extended to all

amplitudes in [15]. It has also been observed at strong coupling via the work of Alday and

Maldacena [16–18], where the dual conformal symmetry is identified as the isometry group

of a copy of AdS5 that is T-dual to the usual one [19, 20].

In a somewhat separate line, the properties of tree amplitudes under usual superconfor-

mal transformations can be made manifest by transforming them into twistor space [21–25],

where they reveal a rich geometric structure [24, 26]. Building on this work, Arkani-Hamed

et al. have recently shown [27] that n-particle NkMHV tree amplitudes can be obtained

from a contour integral over a certain Grassmannian manifold, where the integrand is nat-

urally a function of n twistors in addition to the Grassmannian parameters. Furthermore,

different contours in the same Grassmannian lead to 1-loop box coefficients.

Now, just as twistor space can be introduced as the spin space of the ordinary super-

conformal group — twistors being in the fundamental representation of PSU(2, 2|4) — we

can also introduce a twistor space for the dual superconformal group. Following Hodges,

who first introduced them in [28], we will refer to these dual superconformal twistors as

momentum twistors, as they relate to (region) momentum space in essentially the same way

that ordinary twistors relate to space-time. As a result, momentum space amplitudes may

be transformed to momentum twistor space by a purely algebraic procedure. In particular,

no choice of space-time signature is implied and many of the problems of the usual twistor

approach are thereby avoided.

In this paper, we show that amplitudes and box coefficients may also be generated from

a contour integral over cycles in a Grassmannian that depend on momentum twistors. Thus,

as well as the dihedral symmetry, dual superconformal invariance is now made manifest.

The momentum twistor and original twistor generating functions are strikingly similar.

However, for NkMHV amplitudes, the Grassmannian we deal with is G(k, n) — the param-

eter space of k-planes in C
n — rather than G(k+2, n) and, correspondingly, our integrand

involves determinants of k×k matrices rather than (k+2)×(k+2) matrices. Explicit com-

putations are thus considerably easier than in [27]. We also share many of the benefits of

their framework. These formulations make it easy to see the dihedral symmetry and parity

invariance of the amplitudes. Furthermore, highly non-trivial identities in momentum space

— such as the equivalence of different BCFW decompositions of a tree amplitude, or the IR

equations that enforce vanishing of certain combinations of box coefficients [29] — become

simple applications of the global residue theorem (a higher-dimensional generalisation of

Cauchy’s theorem, see e.g. [30, 31]). Their formulation makes the usual superconformal

invariance explicit, whereas ours makes the dual superconformal invariance explicit.

Writing amplitudes in the momentum twistor representation has several benefits.

Most obviously, dual superconformal invariance is made manifest. Secondly, the vari-
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ous terms that contribute to an amplitude or box coefficient (e.g. Rn;abRn;cd, Rn;abRn;ab;cd,

Rn;abR
ba
n;ab;ad and Rn;abR

ab
n;bd for the N2MHV tree [6]) are all placed on equal footing. Third,

as in usual twistor space, the global residue theorem provides the key mathematical ma-

chinery underlying the non-trivial relations between different sums of invariants. Finally,

the momentum twistor representation gives such dual superconformal invariants a geo-

metric meaning. This is most transparent for the basic invariants Rn;ab — revealed in

section 2.3 as the condition that five momentum supertwistors be linearly dependent —

but more complicated dual superconformal invariants are also intimately connected with

the geometry of the Grassmannian.

The plan of the paper is as follows. In section 2, we explain how to transform N = 4

superamplitudes to momentum twistor space. This fills the gap in [28], where the momen-

tum twistor form of the superconformal Rn;ab was only posited. In section 3 we introduce

the Grassmannian proposal, motivating it as a natural generalisation of the expression for

ANMHV
5,0 /AMHV

5,0 found in section 2.3. In section 4 we give a further set of examples of the

use of the Grassmannian to generate amplitudes and box coefficients. We find that the

specific contours needed to isolate a given tree amplitude or box coefficient closely corre-

spond to the contour specifications made in [27] (curiously, they differ only by the simple

cyclic shift i→ i+1 in the external states). In particular, after finding contours that yield

superconformal invariants which do not correspond to any object at tree level or one loop,

Arkani-Hamed et al. [27] made the bold conjecture that their Grassmannian generating

function really computes the leading singularity [32–36] of amplitudes to all loops. Since

every contour choice made in [27] also has a meaning here, we also make the analogous

conjecture in this dual superconformal context.

As mentioned above, momentum twistors were originally introduced by Hodges [28]

where he interpreted NMHV tree amplitudes as supersymmetric volumes of certain dihe-

drally symmetric polytopes in dual twistor space. In section 5 we give a formal argument

to show how such polytopes are related to our Grassmannian formulation by Fourier trans-

form. We conclude in section 6.

Note added. Immediately after this paper appeared on the arXiv, a direct relationship

between the Grassmannian formulæ in twistor space and momentum twistor space was

derived in [37].

2 Momentum twistors and dual conformal invariance

An on-shell N = 4 supermultiplet

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηaΓa(λ, λ̃) + · · · + ǫabcd

4!
ηaηbηcηdG−(λ, λ̃) . (2.1)

depends on bosonic spinor momenta1 (λA, λ̃A′) and a fermionic variable ηa that counts the

helicity of the component fields. In the planar sector of n-particle scattering amplitudes,

1A = 0, 1 and A′ = 0′, 1′ are anti self-dual and self-dual Weyl spinor indices, while a = 1, . . . , 4 is an

R-symmetry index. We typically suppress these indices in what follows.

– 3 –
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the colour-ordering allows us to naturally encode the n such supermomenta into n region

supermomenta (xi, θi), defined up to translation by (see figure 2)

xi − xi+1 ≡ λiλ̃i θi − θi+1 ≡ λiηi . (2.2)

In this paper, we will be primarily interested not in the usual superconformal group act-

ing on space-time, but rather the dual superconformal group. This acts on the region

momenta (xi, θi) in exactly the same manner as the usual superconformal group acts on

space-time [1]. It is thus possible to construct a twistor space for the region momenta. To

prevent confusion with the usual twistor space and its dual, we follow [28] in calling this

space momentum twistor space — it is the space of the fundamental representation of the

dual conformal group.

Working with (x, θ) ensures that the supermomentum constraints

∑

i

pi = 0
∑

i

λiηi = 0 (2.3)

are automatically satisfied. The picture is of a polygon in the space of region momenta, all

of whose edges are null ray segments corresponding to the supermomenta of the external

particles. Inspired by the AdS/CFT correspondence [16] it was shown in [38, 39] that the

expectation value of a Wilson loop stretched along this polygonal contour reproduces the

MHV amplitude.2 From the point of view of the Wilson loop, the dual superconformal

symmetry of the amplitude is just the usual superconformal symmetry. Thus, one may

equivalently think of momentum twistor space as the standard twistor space associated to

this Wilson loop.

2.1 Basics of twistor geometry

In this subsection we briefly review the basics of twistor geometry and its correspondence

with space-time. This correspondence can equally be viewed as being between usual twistor

space and (conformally compactified) space-time, or between momentum twistor space and

the (dual conformally compactified) space of region momenta. Most of the material here

is readily available in standard twistor theory texts (see e.g. [44–47]), but since many of

the following formulæ are useful in translating the dual superconformal invariants into

momentum twistor space, we include their derivation to make this paper self-contained.

Readers for whom the twistor correspondence is familiar (or those willing to take our

translation to momentum twistor space on trust) may prefer to skip ahead to section 2.2.

Conformally compactified Minkowski space may be described as the SO(2, 4)-invariant

(Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 , (2.4)

2So far, the correspondence has been checked for n particles at 1-loop [39] and up to 6 particles at

2-loops [40, 41]. (The n particle 2-loop MHV amplitude has recently been computed in [42], where the

answer is expressed as a sum of conformal integrals, while the corresponding Wilson loops computation

was performed numerically in [43]. Differences in methodology mean that these results have not yet been

compared.)

– 4 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
5

where {T, V,W,X, Y,Z} are homogeneous coordinates for RP
5. It is convenient to package

these six coordinates into Xαβ = −Xβα (where α, β, . . . = 0, 1, 2, 3) as follows

X01 = W − V , X02 =
1√
2
(Y + iX) , X03 =

i√
2
(T − Z) ,

X12 = − i√
2
(T + Z) , X13 =

1√
2
(Y − iX) , X23 =

1

2
(V +W ) .

(2.5)

whereupon the quadric (2.4) becomes3

ǫαβγδXαβXγδ = 0 . (2.6)

This condition turns out to be equivalent to the simplicity constraint Xα[βXγδ] = 0, so an

arbitrary skew X satisfies (2.6) — and thus corresponds to a point in space-time — if and

only if

Xαβ = A[αBβ] (2.7)

for some A, B in twistor space. It is often convenient to work with complexified space-

time, with Xαβ viewed as homogeneous coordinates on CP
5. Then twistor space is a copy

of CP
3 and may be described by homogeneous coordinates4 [Wα] subject to the equivalence

relation [Wα] ∼ [rWα] for any non-zero complex scaling r. The two (distinct) points A,B

determine a line5 in CP
3, so points of conformally compactified, complexified space-time

correspond to holomorphic lines CP
1 ⊂ CP

3. Conversely, an arbitrary point W ∈ CP
3 lies

on the line [A ∧B] if and only if

X[αβWγ] = 0 (2.8)

so that Wα is a linear combination of Aα and Bα.

The Klein quadric has a natural conformal structure: two points X and Y on the Klein

quadric (i.e., conformally compactified space-time) are null-separated if and only if

ǫαβγδXαβYγδ = 0 , (2.9)

in which case their associated twistor lines intersect. However, since Xαβ and Yαβ are

homogeneous coordinates, there is no natural scale for any non-zero value of XαβYαβ. To

pick a preferred scale, breaking the conformal group to the Poincaré group, one introduces

the fixed infinity twistor, defined by

Iαβ ≡
(

ǫA
′B′

0

0 0

)

, (2.10)

3The totally skew tensor ǫαβγδ = ǫ[αβγδ] (with ǫ0123 = +1) is a canonical structure for the conformal

group SO(2, 4) ≃ SU(2, 2).
4With Penrose conventions, the twistor space with coordinates Zα would usually be taken as primary,

and the Wα space referred to as ‘dual’. It is unfortunate that this clashes with the prevalent conventions

in perturbative gauge theory, whereby MHV amplitudes involve unprimed/undotted spinors |λ〉 and so live

most naturally on Penrose’s dual space. We will work with perturbative gauge theory conventions in this

paper.
5In the dual CP

3 — Penrose’s twistor space — the equations AαZα = 0 and BαZα = 0 each determine

a plane (CP
2), whose intersection is again a line (CP

1).

– 5 –
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i
+

i
−

i0 i0

Figure 1. The Penrose diagram of Minkowski space. Spacelike infinity i0 is a single point, and i0
and i± are all identified in the conformal compactification. They thus correspond to the same point

on the Klein quadric, and the same line I in twistor space. The rest of the conformal boundary

— null infinity — corresponds to points X on the Klein quadric that obey XαβIαβ = 0, or twistor

lines that intersect the distinguished line I.

that represents a fixed point in conformally compactified space-time, taken to be the vertex

of the ‘lightcone at infinity’ (see figure 1). The infinity twistor allows us to define a metric

(x− y)2 ≡ XαβYαβ

IγδXγδIρσY ρσ
(2.11)

that is independent of rescalings of the homogeneous coordinates. Thus, if x and y are rep-

resented by the twistor lines [A∧B] and [C∧D] respectively, their Minkowski separation is

(x− y)2 =
ǫ(A,B,C,D)

〈AB〉〈CD〉 (2.12)

in terms of twistor variables, where ǫ(A,B,C,D) ≡ ǫαβγδAαBβCγDδ and

〈AB〉 ≡ IαβAαBβ (2.13)

is the standard spinor inner product.

The infinity twistor also plays an important role as a projection operator. Raising

indices with the ǫ-symbol, the dual infinity twistor

Iαβ ≡ 1

2
ǫαβγδIγδ =

(

0 0

0 ǫAB

)

(2.14)

projects Wα onto its secondary (unprimed) part

IαβWβ = (0, λA) (2.15)

where λA is a left-handed Weyl spinor. We will abuse notation somewhat to informally

write λA = IαβWβ. The remaining components of Wα behave as a spinor of opposite

chirality and we often decompose twistors into their constituent spinors Wα = (µA′
, λA).

– 6 –
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In these coordinates, the usual coordinates xAA′
on affine space-time are obtained from

Xαβ by

Xαβ =

(

−1
2ǫ

A′B′
x2 −ixA′

B

ix B′

A ǫAB

)

, Xαβ =

(

ǫA′B′ −ix B
A′

ixA
B′ −1

2ǫ
ABx2

)

, (2.16)

where, if X is the line through U = (µU , λU ) and V = (µV , λV ) in twistor space, then

xAC′
= i

(µUλV − µV λU )AC′

〈U V 〉 (2.17)

The incidence relation (2.8) becomes

µA′
= −ixAA′

λA (2.18)

(as many readers will find familiar), while the distinguished line corresponding to the

infinity twistor is λA = 0. Likewise, the displacement x − y may be written in twistor

variables as

(x− y)CA′
= Iαβ I

γδ ǫ
β( · , A,B,C)Dδ − ǫβ( · , A,B,D)Cδ

〈AB〉〈CD〉

= Iαβ I
γδ ǫ

β( · , C,D,B)Aδ − ǫβ( · , C,D,A)Bδ

〈AB〉〈CD〉 .

(2.19)

Though not conformally invariant by themselves, equations (2.12) and (2.19) will be of

particular use in translating (dual) conformal invariants such as Rn;ab to (momentum)

twistor space.

All of the above has a straightforward generalization to supertwistors. Conformally

compactified chiral superspace may be viewed as the space of lines in CP
3|4 (for N = 4

supersymmetry), with homogeneous coordinates [WI ] = [Wα, χa]. A line through points U
and V in supertwistor space is described by the simple (graded-)skew supertwistor XIJ =

U[IVJ}. The incidence relation (2.8) generalizes to X[IJWK} = 0, or

µA′
= −ixAA′

λA , χa = θA
aλA (2.20)

in the basis determined by the infinity twistor. Here, (x, θ) are coordinates on an affine

patch of chiral superspace and are given in terms of the components of the supertwistors

U , V as

(x, θ) =

(

i
µV λU − µUλV

〈UV 〉 ,
χV λU − χUλV

〈UV 〉

)

. (2.21)

Note also that

θA
r =

Iαβ(U[βVr])

〈U V 〉 , (2.22)

so that θ is simply the projection of the fermionic part of [U ∧V] using the infinity twistor

as in (2.14). This expression will be useful when translating the numerators of the dual

superconformal invariants.

So far, the geometric correspondence we have outlined holds equally for the usual

twistor space of standard space-time and for the momentum twistor space associated to

– 7 –
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x1

x2 x3

xn xn−1

.

.

.

p1

p2

p3

pn

pn−1

pn−2

X1

X2 X3

Xn

Xn−1

W
n−1

W
n

W
1

W
2

.

.

.

Figure 2. A scattering amplitude in momentum space, together with the corresponding array

of (generically skew) intersecting lines in momentum twistor space. The diagram illustrates the

labelling of region momenta xi. Our conventions are such that xij =
∑j−1

k=i pk and therefore Xi ∩
Xi+1 = W i. Note that the array of twistor lines corresponds precisely to the polygonal contour of

the Wilson loop in x-space, with edges and vertices interchanged.

the region momenta. However, the cyclic ordering inherent in the definition of region

momenta introduces some special features that we now discuss.

Null geodesics in space-time correspond to a unique twistor (up to overall scaling):

given a point x0 on the ray

x(t) = x0 + tλλ̃ , (2.23)

all the components of W are fixed by the incidence relation (2.18) after identifying the

unprimed part IαβWα of W with the unprimed spinor λA determined by the ray. Thus,

associated to our null polygon in region momentum space, there are n twistors W i — one

for each external particle (or each edge of the Wilson loop). This determines a polygon in

twistor space whose edges are the lines Xi corresponding to the region momenta xi. Our

conventions are that the region momentum xi corresponds to the line Xi through points

W i−1 and W i in momentum twistor space (see figure 2). Thus

(Xi)αβ = W i−1
[α W i

β] or (xi)
AC′

=
Iαβ

(

W i−1
β W i C′ −W i−1 C′

W i
β

)

〈i−1 i〉 (2.24)

With these conventions, Wi = Xi ∩Xi+1 so

µiA′
= −ixAA′

i λi
A and µiA′

= −ixAA′

i+1 λ
i
A ⇒ (xi − xi+1)

AA′
λi

A = 0 . (2.25)

For the fermionic components, we likewise have

(θi)
A
r =

Iαβ
(

χi−1
r W i

β −W i−1
β χi

r

)

〈i−1 i〉 , (2.26)

– 8 –
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while the incidence relations read

χi
a = θA

i aλ
i
A and χi

a = θA
i+1aλ

i
A ⇒ (θi − θi+1)

AA′
λi

A = 0 . (2.27)

Thus the incidence properties are consistent with the conventions xi − xi+1 = λiλ̃i = pi

and θi − θi+1 = λiηi of equation (2.2). As a corollary, we can identify λ̃i and ηi in terms

of twistor variables as

λ̃i = −i
µi−1〈i i+1〉 + µi〈i+1 i−1〉 + µi+1〈i−1 i〉

〈i−1 i〉〈i i+1〉

ηi = −χ
i−1〈i i+1〉 + χi〈i+1 i−1〉 + χi+1〈i−1 i〉

〈i−1 i〉〈i i+1〉 .

(2.28)

Together with the fact that the momentum spinor λi is also the secondary part of the

twistor, this allows us to express translate amplitudes from supermomenta to momentum

twistors. However, it is clear from this formula that although there is one twistor for each

external particle, the relation between the momenta and the twistor is not localized — to

specify a particle’s momentum, one needs knowledge of both its corresponding twistor and

those of its nearest neighbours in the given colour-ordering.

2.2 Translating the dual superconformal invariants

The simplest dual superconformal invariants appearing in the scattering amplitudes are

Rt;rs ≡
〈r − 1 r〉〈s − 1 s〉 δ0|4(Ξt;rs)

x2
rs〈t|xtsxsr|r − 1〉〈t|xtsxsr|r〉〈t|xtrxrs|s− 1〉〈t|xtrxrs|s〉

(2.29)

where

Ξt;rs ≡ 〈t|xtsxsr|θrt〉 + 〈t|xtrxrs|θst〉 . (2.30)

Here, xij ≡ xi−xj =
∑j−1

k=i λkλ̃k denotes a partial sum of the external momenta, and θij ≡
θi − θj likewise denotes the partial sum

∑j−1
k=i λkηk. In this subsection, we show that Rt;rs

has a simple expression in terms of momentum twistors. This provides the supersymmetric

formula needed by Hodges in his interpretation of NMHV tree amplitudes as volumes of

certain polyhedra [28] (and assumed by him in equation (30) of that paper). The formula

we obtain has manifest dual conformal, but not dual superconformal symmetry. A formula

that has the full dual superconformal symmetry manifest will be obtained in the following

subsection, and leads naturally to our Grassmannian generating function.

Consider first the denominator of (2.29). It follows immediately from (2.11) and Xr =

[W r ∧W r−1] that

x2
rs =

ǫ(r − 1, r, s − 1, s)

〈r−1 r〉〈s−1 s〉 . (2.31)

Likewise, the displacement formula (2.19) for xts and xsr gives

〈t|xtsxsr|r − 1〉 =
ǫ(t, s− 1, s, r − 1)

〈s−1 s〉 . (2.32)

– 9 –
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This allows us to translate the denominator. Exactly the same reasoning can be used for

the numerator, where it is helpful to first rewrite Ξt;rs using the identity

〈t|xtsxsr|θrt〉 + 〈t|xtrxrs|θst〉 = x2
rs〈t|θr〉 + 〈t|xtsxsr|θr〉 + 〈t|xtrxrs|θs〉 . (2.33)

From equation (2.26) we find

x2
rs〈t|θt〉 =

ǫ(r−1, r, s−1, s)

〈r−1 r〉〈s−1 s〉 χ
t (2.34)

and

〈t|xtrxrs|θs〉 =
ǫ(t, r−1, r, s−1)χs − ǫ(t, r−1, r, s)χs−1

〈r−1 r〉〈s−1 s〉 (2.35)

Combining these and analogous terms shows that Rt;rs is written in momentum twistor

variables as

Rt;rs =
δ0|4(χtǫ(r − 1, r, s − 1, s) + cyclic)

ǫ(t, r − 1, r, s − 1)ǫ(r − 1, r, s − 1, s)ǫ(r, s − 1, s, t)ǫ(s − 1, s, t, r − 1)ǫ(s, t, r − 1, r)
.

(2.36)

We will often denote these basic dual superconformal invariants — the ratio of the 5-

particle N1MHV tree amplitude to the 5-particle MHV tree — by R1,5. When we wish

to make explicit the dependence on particular external twistors, we will use the notation

R1,5(r − 1, r, s − 1, s, t).

Equation (2.36) makes various properties of these dual superconformal invariants trans-

parent. Firstly, we see that all the factors involving infinity twistors (spinor products) have

cancelled out and (2.36) is written purely in terms of skew products of momentum twistors,

together with a fermionic δ0|4-function. Thus R1,5 is manifestly invariant under the maxi-

mal bosonic subgroup of the dual superconformal group. More importantly R1,5(a, b, c, d, e)

makes clear that these invariants depend on five external states, and is skew symmetric in

its arguments. Thus, various identities of the form

Rr+2;s,r+1 ≡ Rr;r+2,s (2.37)

follow immediately, whereas they are somewhat obscure in the momentum space expres-

sion (2.29). Such identities are useful, for example in proving the dual superconformal

invariance of all one-loop NMHV box cofficients [11, 14, 15]. Equation (2.36) also shows

that R1,5 becomes singular6 whenever any of the denominator factors ǫ(a, b, c, d) vanish,

i.e. whenever any four of the five twistors become coplanar. These singularities are physi-

cal whenever {a, b, c, d} form two cylically adjacent pairs, otherwise they are spurious and

must cancel in the overall expression for the amplitude.

We also emphasize that, since the translation between the (x, λ, θ) and W = (W,χ)

variables was purely algebraic, it does not rely on any choice of space-time signature. This

is standard for twistor constructions (such as the Penrose transform) that move between

twistor space and space-time, but is in marked contrast to Witten’s half-Fourier trans-

form [48] between on-shell momentum space and (standard) twistor space, that is well-

defined only for real twistors and (2,2)-signature space-time. In the present case, (2.36)

6Of course, a given singularity may be absent in some components of the N = 4 supermultiplet.
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may be analytically continued as a holomorphic function of five momentum supertwistors,

just as (2.29) may be analytically continued into complex momentum space.

2.3 Rt;rs as linear dependence of five momentum supertwistors

Although easily shown, (2.36) does not make the full superconformal symmetry manifest.

It is revealing to reformulate R1,5 so as to bring this out. The reformulation will show

that R1,5 has a simple geometric meaning — it is the condition that five supertwistors are

linearly dependent. Furthermore, this reformulation provides the key to generalizing R1,5

to other dual superconformal invariants needed for n-particle NkMHV amplitudes.

We wish to prove that

R1,5 =

∫

CP
4

D4T

T 1 · · · T 5
δ̄4|4

(
5∑

i=1

TiWi

)

. (2.38)

Let us first explain the notation. The integral is to be taken over a copy of CP
4 with

homogeneous coordinates [Ti] (where i = 1, . . . , 5) and

D4T :=
1

5!
ǫijklmTidTj ∧ dTk ∧ dTl ∧ dTm (2.39)

is the canonical top holomorphic form of homogeneity +5. The weight of this form is bal-

anced by the product T1 · · · T5 in the denominator. The distributional (0,4)-form δ̄4|4(TiWi)

is defined to be

δ̄4,4
(
TiWi

)
:= δ0|4

(
Tiχ

i
)

3∏

α=0

∂̄

(
1

TiW i
α

)

, (2.40)

where the ∂̄-operator here is associated with the T s (and δ0|4(Tiχ
i) = (Tiχ

i)4 is the standard

fermionic δ-function). Since this has homogeneity zero in T , the integrand of (2.38) is a

weightless (4, 4)-form, so that the integral over CP
4 is well-defined.

Recalling the standard Cauchy formula

∂̄

(
1

z

)

= dz̄ δ2(z) , (2.41)

we see that δ̄4|4(TiWi) has support only where

T1W1 + T2W2 + T3W3 + T4W4 + T5W5 = 0 (2.42)

for each of the supertwistor components — in other words when the five supertwistors

W1, . . . ,W5 are linearly dependent. Since δ̄4|4-function (2.40) has no weight in W, the

result of the integral (2.38) will be well-defined on supertwistor space CP
3|4 and is man-

ifestly invariant under simultaneous (i.e. diagonal) superconformal transformations of the

five supertwistors. We also note that, just as in (2.36), equation (2.38) treats all five su-

pertwistors on an equal footing, and changes sign under a exchange of any two twistors

(because of the corresponding exchange in T s).

To prove that (2.38) is indeed the usual R-invariant, we must perform the integral.

This is straightforward — it is completely fixed by the bosonic δ-functions. Indeed, up to an
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overall scaling, the T s are determined by the bosonic components of (2.42), as may be seen

by contracting with, e.g., ǫ( · , 2, 3, 4), ǫ(1, · , 3, 4), ǫ(1, 2, · , 4) and ǫ(1, 2, 3, · ) respectively.

One finds

δ̄4(TiW
i) =

1

T 4
5 ǫ(1, 2, 3, 4)

δ̄

(
T1

T5
− ǫ(2, 3, 4, 5)

ǫ(1, 2, 3, 4)

)

δ̄

(
T2

T5
− ǫ(3, 4, 5, 1)

ǫ(1, 2, 3, 4)

)

× δ̄

(
T3

T5
− ǫ(4, 5, 1, 2)

ǫ(1, 2, 3, 4)

)

δ̄

(
T4

T5
− ǫ(5, 1, 2, 3)

ǫ(1, 2, 3, 4)

) (2.43)

with the factor of T 4
5 ǫ(1, 2, 3, 4) arising as a Jacobian. The ratios Tj/T5 (for j = 1, . . . , 4)

are thus fixed, with the underlying geometric interpretation that linear dependence of five

bosonic twistors is automatic — we can always use four twistors (in general position) as a

basis of CP
3. The ratios Tj/T5 are simply the components ofW 5 in the {W 1, . . . ,W 4} basis.

The remaining fermionic δ0|4-function keeps track of the fact that linear dependence is

not automatic for five supertwistors, and constrains their anticommuting parts to have the

same component decompositions as the commuting parts. Substituting the ratios Tj/T5

from (2.43) into δ0|4(Tiχ
i), the overall factors of T5 cancel (as they must for homogeneity)

and one recovers

∫

CP
4

D4T

T1 · · ·T5
δ̄4|4

(
5∑

i=1

TiWi

)

=
δ0|4
(
χ5 ǫ(1, 2, 3, 4) + cyclic

)

ǫ(1, 2, 3, 4)ǫ(2, 3, 4, 5)ǫ(3, 4, 5, 1)ǫ(4, 5, 1, 2)ǫ(5, 1, 2, 3)

(2.44)

as promised.

We have thus written the basic R-invariants in a way that makes their dual supercon-

formal invariance manifest — without reference to any choice of space-time signature. More

importantly, we see they have the simple geometric interpretation as the condition that five

momentum supertwistors be linearly dependent. The fact that the basic dual supercon-

formal invariants Rt;rs of (2.29) can be given such an elegant description as the condition

that five supertwistors be linearly dependent is an illustration of the usefulness of the

(momentum) twistor representation when dealing with (dual) conformal objects. In [28],

Hodges gave an alternative interpretation of R1,5 as the volume of a polytope in momentum

supertwistor space. The relation of Hodges’ picture to ours will be explored in section 5.

For some purposes, it will be useful to represent R1,5 as a contour integral

R1,5 =
1

(2πi)4

∮

Γ

D4T

T1 · · ·T5

δ0|4
(
Tiχ

i
)

∏3
α=0 (TiW i

α)
, (2.45)

where the contour is chosen to encircle each of the four simple poles in the product over

bosonic twistor components, i.e.

Γ =

{

T ∈ CP
4 such that

∣
∣
∣
∣
∣

5∑

i=1

TiW
i
α

∣
∣
∣
∣
∣
= εα

}

(2.46)

for some positive infinitesimals εα. As is standard (see e.g. [30, 31]), we orient Γ ≃ (S1)4

by the condition

dφ0 ∧ dφ1 ∧ dφ2 ∧ dφ3 ≥ 0 , (2.47)
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where φα = arg
(
TiW

i
α

)
. Because of the ordering in α, this orientation depends on the

orientation of the twistor space. In particular, the orientation of Γ is reversed — and (2.45)

changes sign — if any two twistors are interchanged, since any basis of the twistor space

CP
3 that includes the two twistors in question will also change orientation. Γ restricts

the support of the T s in just the same way as the bosonic δ-functions of (2.40) and the

contour integral may be performed using the same change of variables as in (2.43). Note

that the contour version (2.45) may be derived directly from the Dolbeault form (2.38)

using Stokes’ theorem (see e.g. [30]).

In the rest of the paper, it will be convenient to write

R1,5 =
1

(2πi)4

∮

Γ

D4T

T1 · · ·T5
δ4|4

(
∑

i

TiWi

)

(2.48)

even with complex momentum twistors, so as to emphasize the dual superconformal in-

variance. This notation is used with the understanding that the bosonic δ-functions are to

be treated as Cauchy poles with the contour (2.46).

2.4 Real twistor formulations

In the case of (2,2) signature space-time, the (momentum) twistors are completely real

and one may be tempted to interpret (2.48) as an integral of a real δ-function over RP
4.

This is not quite right — RP
4 is not orientable, so D4T/T1 · · ·T5 does not provide a

integral density.7 However, D4T/|T1 · · ·T4| does provide a density that can be integrated

over RP
4 globally. There is also an extra modulus sign in the Jacobian of the change of

variables (2.43) in the δ-functions, corresponding to the familiar

δ(ax) =
1

|a|δ(x) instead of δ̄(az) =
1

a
δ̄(z) . (2.49)

Therefore (even with this density) treating (2.48) as a real integral yields R1,5, but with

an overall modulus sign in the denominator

∫

RP
4

D4T

|T1 · · ·T5|
δ4|4

(
∑

i

TiWi

)

=
δ0|4
(
χ5 ǫ(1, 2, 3, 4) + cyclic

)

|ǫ(1, 2, 3, 4)ǫ(2, 3, 4, 5)ǫ(3, 4, 5, 1)ǫ(4, 5, 1, 2)ǫ(5, 1, 2, 3)|
(2.50)

and one needs provide an additional overall sign to recover the correct result. One such

correct formula is

R1,5 = sgn(ǫ(2, 3, 4, 5))

∫
d4t

t1 · · · t4
δ4|4

(

W1 +
4∑

i=2

tiWi

)

(2.51)

Of course, the contour integral (2.48) applies in any signature, or in complex momentum

space. In split signature, one would simple find that all the poles happen to lie on a copy

of RP
4 ⊂ CP

4.
7The scaling relation [T ] ∼ [rT ] on real projective spaces has r ∈ R

∗. This has two connected com-

ponents, r ∈ R
±, and positive and negative scalings must be considered separately. Quotienting by the

positive scalings yields the sphere Sn. The form DnT/T1 · · ·Tn is invariant under a negative scaling, but

the orientation of Sn reverses when n is even.
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Similar awkward signs arise in the context of analyzing scattering amplitudes using

Witten’s half-Fourier transform to usual twistor space (i.e. the space of the fundamental

representation of the usual superconformal group) as found in [24–26]. For many purposes

the split signature formulation yields significant insights, but it has always been encumbered

with these sign defects. These are tied to the fact that cohomology is sidestepped in this

formulation, and so cohomological signs have to re-appear somewhere in order to get the

right answer. The signs are incorporated naturally by the use of contour integrals or

Dolbeault δ̄-functions as above.

3 Grassmannians and momentum twistors

Having interpreted the simplest dual superconformal invariant, various questions naturally

arise. Firstly, can one understand how to naturally obtain sums of these basic R-invariants,

as required for example in NMHV tree amplitudes or certain box coefficients? Secondly,

can one find a similarly natural expression for the higher-order R-invariants that appear

at N2MHV level and beyond?

The key to answering these and other questions is to interpret (2.48) as a particular case

of a contour integral in the Grassmannian of k-planes in C
n, G(k, n) (equation (2.48) being

the case k = 1, n = 5 for which G(1, 5) = CP
4). The idea to interpret (objects related to)

the S-matrix of N = 4 SYM in terms of such a contour integral over a Grassmannian was

introduced by Arkani-Hamed et al. [27] in the context of usual supertwistors. Our use of the

Grassmannian is directly inspired by ref. [27], but instead works with momentum twistors.

To motivate the Grassmannian integral, first consider extending (2.48) to the n-particle

contour integral

R1,n :=
1

(2πi)n−1

∮
Dn−1T

T1 · · ·Tn
δ4|4(T · W) . (3.1)

where T = (T1, . . . , Tn) determines a line in C
n, and we have assembled the n supertwistors

into the column vector

W =









W1

W2

...

Wn









(3.2)

so that T ·W =
∑n

i=1 TiWi.

The integrand of (3.1) is a meromorphic top-degree form on CP
n−1, but as there are

still only four bosonic δ-functions (really, Cauchy poles associated with a (S1)4 contour), we

must still choose an n− 5 dimensional contour in order for (3.1) to be meaningful. We can

recover R1,5 by choosing this remaining contour to encircle each of the n− 5 simple poles

T6, . . . , Tn in the measure: when T6, . . . , Tn vanish, (3.1) becomes independent of twistors

W6, . . . ,Wn. It should now be clear that (just as in [27]) we will be able to extract sums of

basic R-invariants by choosing a contour that encircles an appropriate combination of poles

from the measure of (3.1), with the sum arising from the usual sum over residues at the

various singularities. Moreover, by deforming the contour and using higher-dimensional
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versions of Cauchy’s theorem,
∑

Res ω = 0 (3.3)

for ω a meromorphic 1-form on CP
1, we can obtain a host of identities relating sums

of different R-invariants. In the context of usual twistor space (or momentum space), a

detailed discussion of the appropriate contours for n-particle NMHV tree amplitudes and

box coefficients was given by Arkani-Hamed et al. [27]. We will see in section 4 that the

closely related contours are also appropriate in the context of momentum twistors.

The original, twistorial Grassmannian picture of [27] obtains NMHV amplitudes and

box coefficients from a contour integral in G(3, n) rather than our projective space G(1, n).

Likewise, the denominator T1 . . . Tn of (3.1) is replaced in [27] by an n-fold product of

2 × 2 determinants. The added simplicity of the momentum twistor approach here comes

at the expense of not reproducing the MHV prefactor that appears in the amplitude and

is obtained in [27]. In this respect, the momentum twistor approach is somewhat comple-

mentary to the polygonal Wilson loop of [38–40, 43] that yields only the MHV prefactor.

To consider NkMHV amplitudes, we generalize (3.1) to

Rk,n :=
1

(2πi)k(n−k)

∮

Γ⊂G(k,n)
dµ

k∏

r=1

δ4|4(Tr·W) . (3.4)

For each r, Tr is a vector in C
n, and the k such vectors






T1

...

Tk




 =






T 1
1 T

1
2 · · · T 1

n−1 T
1
n

...
...

...
...

T k
1 T

k
2 · · · T k

n−1 T
k
n




 (3.5)

determine a k-plane. The T r
i are the k×n homogeneous coordinates on G(k, n). Note that

dimC G(k, n) = k(n− k) . (3.6)

The measure dµ is defined as follows. Firstly, there is a natural holomorphic k(n−k)-form
that is GL(k) ×GL(n) invariant:

Dk(n−k)T ≡ T i1 1...i1 (n−k) · · ·T ik 1...ik (n−k) (dkT )i1 1...ik 1
∧ . . . ∧ (dkT )i1 (n−k)...ik (n−k)

(3.7)

where

T i1...in−k ≡ 1

n!k!
ǫi1...inǫr1...rk

T r1
i(n−k+1)

· · ·T rk

in
and (dkT )i1...ik ≡

1

k!
ǫr1...rk

dT r1
i1
∧. . .∧dT rk

ik
.

(3.8)

Dk(n−k)T is thus a natural generalization of the weighted top holomorphic form

Dn−1T ≡ 1

n!
ǫi1...inTi1dTi2 ∧ . . . ∧ dTin (3.9)

on CP
n−1, and is invariant under local GL(k) transformations (i.e. ones that vary over

G(k, n)). One can fix this GL(k) freedom by reducing a k × k block of T to the identity
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matrix, e.g. on a patch of G(k, n) where the determinant of the first k columns of T is

non-vanishing, we can set






T 1
1 T

1
2 · · · T 1

k T
1
k+1 · · · T 1

n
...

...
...

...

T k
1 T

k
2 · · · T k

k T
k
k+1 · · · T k

n






GL(k)−→






1 · · · 0 t1 k+1 · · · t1 n

...
. . .

...
...

...

0 . . . 1 tk k+1 · · · tk n




 . (3.10)

whereupon (3.7) reduces to the standard measure dk(n−k)t on our C
k(n−k) coordinate patch.

Just as in projective space, DT has weight kn in the homogeneous coordinates. There

is no canonical unweighted measure on G(k, n), and any choice of measure will break the

GL(n) symmetry. However, the δ-functions in (3.4) couple GL(n) transformations of the

Grassmannian to the n external twistors. From the point of view of colour-ordered planar

Yang-Mills amplitudes, the largest symmetry group one expects is the dihedral group on

n elements, comprising cyclic permutations and reflections. Now, one can make a choice

of measure that breaks GL(n) to this dihedral group: following [27] we define

dµ ≡ Dk(n−k)T

(12 · · · k)(23 · · · k+1) · · · (n1 · · · k−1)
, (3.11)

where (12 · · · k) denotes the k × k determinant8 formed from the first k columns of T ,

(23 · · · k+1) is the k×k determinant formed from columns 2 to k+1, and so forth.9 The n-

fold product of minors has homogeneity kn, so dµ is a top meromorphic form of homogeneity

zero, providing a measure on G(k, n). Combining this with the superconformal δ-functions

shows that the integrand in Rk,n is manifestly (dual) superconformally invariant, and is

also manifestly symmetric under dihedral permutations of the external particles. Of course,

when k = 1 we recover R1,n as in (3.1).

The 4k bosonic δ-functions imply an (S1)4k contour as before. When k = n − 4

(MHV), this suffices to fix the integral completely; complementary to the fact that when

k = 0 (MHV), the ratio

R0,n = 1 (3.12)

by definition. In general, though, we must still specify a contour of dimension k(n−4−k) to

fix Rk,n. The bosonic δ-functions restrict the support of (3.4) to the subvariety of G(k, n)

where10

Tr ·Wα = 0 , (3.13)

so that geometrically, each of the vectors Tr must be orthogonal to four fixed vectors Wα

whose direction depends only on the external twistors. Rather than k-planes in C
n, the

orthogonality conditions (3.13) imply that the k-planes spanned by Tr are constrained to

lie in a C
n−4 ⊂ C

n — in other words, the bosonic δ-functions reduce the support of Rk,n

8In [27], the measure associated with an NkMHV amplitude instead involves determinants of (k + 2) ×

(k + 2) matrices.
9The minors can be viewed as the homogeneous coordinates of the Plücker embedding G(k, n) →֒

CP
n!

k!(n−k)!
−1

.
10A reminder: α indexes the four bosonic components of a twistor.
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to a G(k, n − 4) linearly embedded in G(k, n), of dimension k(n − 4 − k). The fact that

after accounting for momentum conservation the ‘true’ Grassmannian is11 G(k, n− 4) was

also noted in ref. [27], but in momentum twistor space one considers an embedding

G(k, n − 4) →֒ G(k, n) (3.14)

whereas in twistor space one has

G(k, n − 4) →֒ G(k + 2, n) (3.15)

instead.

A detailed examination of various choices of contour follows in section 4. The first case

that requires the full machinery of the Grassmannian (rather than just projective space)

is k = 2 or N2MHV, where we must still choose a 2(n − 6) dimensional contour. Again,

we find that the required contours are closely related to those that were relevant in [27].

As in projective space, higher-dimensional generalizations of Cauchy’s theorem allow us to

obtain sums of terms of the appropriate R-charge by choosing contours that enclose several

poles in dµ. Contour deformation arguments will then provide us with myriad identities

relating different forms of the sums of coefficients. All of this may be done in a way that

keeps dual superconformal symmetry manifest throughout.

4 Examples of contours

In this section, we will illustrate the specification of contours necessary to extract various

NMHV and N2MHV tree amplitudes and box coeefficients (all divided by the MHV tree

amplitude) from the Grassmannian master formula

Rk,n =
1

(2πi)k(n−k)

∮

dµ
k∏

r=1

δ4|4(Tr·W) (4.1)

on momentum twistor space. Our aim here is not to give a comprehensive list of all

possible contour choices, nor even to demonstrate all the remarkable properties such multi-

dimensional contour integrals possess (although a modest example - the equivalence of

different BCFW decompositions of the 6 particle NMHV tree amplitude will be seen in

section 4.2). Rather, we intend to establish that the contour specifications used in the

original, superconformal formula of [27] closely correspond to the appropriate contours in

this dual superconformal context.

4.1 NMHV 3-mass and 2-mass-hard box coefficients

The simplest case is the 3-mass box function, whose coefficient12 is precisely the basic dual

11Note that khere = kthere − 2.
12Since our formulation is manifestly dual superconformal invariant, it is clear that we should expect to

compute coefficients of box functions rather than box integrals. Thus this and later figures are somewhat

schematic — the r.h.s. can only be intepreted as the usual product of tree amplitudes (summed over the

internal supermultiplet) once one accounts for this Jacobian (and, indeed, the MHV tree amplitude).
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t

r

s−1

t−1

s

.

.

.

.

.

.

.

.

.

r−1

r+1

R(r, s−1, s, t−1, t) =

Figure 3. The 3-mass NMHV box coefficient. The massless corner of the box is a 3 particle MHV

subamplitude, while the other three corners are MHV subamplitudes.

superconformal invariant obtained from

R1,n =

∮

dµ δ4|4(T · W) . (4.2)

To specify the contour, recall that taking the residue at Ti = 0 ensures that Wi drops out

of the remaining integral. Hence the appropriate (n− 5) dimensional contour (in addition

to the 4 δ-functions) should simply be chosen to separately encircle each of the hyperplanes

Ti = 0 for all i except i ∈ {r, s−1, s, t−1, t}.
The 2-mass-hard box contributions are also straightforward to obtain. They may be

thought of as degenerations of the 3-mass box when either

s = r + 2 or t = r − 1 , (4.3)

so that one of the two MHV amplitudes adjacent to the three-particle MHV subamplitude

itself involves only three particles. The coefficient of a single 2-mass-hard box function is

displayed in figure 4. This sum is obtained by first restricting to the CP
1 ⊂ CP

n−1 defined

by

T ·Wα = 0 , Ti = 0 for i /∈ {r−1, r, r+1, r+2, s−1, s} , (4.4)

and then choosing the remaining S1 contour factor to encircle both the poles Tr−1 = 0 and

Tr+2 = 0.

In [27], the 3-mass box coefficient was identified with the contour that computes the

residue when all except the {r−1, s−2, s−1, t−2, t−1}th minors vanish. Likewise, the 2mh

box coefficient there came from a contour encircling each of the poles associated to all the

minors except {r−1, r, s−2, s−1} and either r−2) or r+1. These contour specifications

differ from ours (for the same arrangement of legs on the associated box function) only by

a cyclic shift i→ i−1.
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r

r+1

r−1

r−2

s−1 s

R(r−1, r, r+1, s−1, s)

+

R(r, s−1, s, r−2, r−1)

=

.

.

.

.

.

.

Figure 4. The 2-mass hard NMHV box coefficient may be obtained as a degeneration of the 3-mass

box coefficient when either of the MHV subamplitudes adjacent to the MHV subamplitude have

only one external leg.

4.2 NMHV tree amplitudes

The 6-particle NMHV tree amplitude is given by

ANMHV
6,0

AMHV
6,0

= R6;24 +R6;25 +R6;35

= R(6, 1, 2, 3, 4) +R(6, 1, 2, 4, 5) +R(6, 2, 3, 4, 5) .

(4.5)

This sum of dual conformal invariants may be obtained from (2.48) using the contour that

encircles the residues at T1 = 0, T3 = 0 and T5 = 0 on the CP
1 ⊂ CP

5 given by T ·Wα = 0:

Moreover, the identity

R6;24 +R6;25 +R6;35 +R1;46 +R1;36 +R1;35 = 0 (4.6)

that guarantees cyclic symmetry of the amplitude is manifest with this contour choice,

arising as a simple application of Cauchy’s theorem.

Singularities of the six particle amplitude arise when the contour becomes pinched —

that is, when a pole in the ‘upper’ and a pole in the ‘lower’ hemisphere of {T ·Wα = 0}
collide so that (e.g.) the intersection

{T1 = 0} ∩ {T4 = 0} ∩ {T · Wα = 0}

is non-empty. This implies

T2W
2 + T3W

3 + T5W
5 + T6W

6 = 0 (4.7)

so the twistors {2, 3, 5, 6} must be coplanar. It then follows that

x2
36 ∝ ǫ(2, 3, 5, 6) = 0 (4.8)
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Figure 5. The Riemann sphere given by {T ·Wα = 0} ⊂ CP
5. The six marked points are the

intersections of this CP
1 with the hyperplanes Ti = 0. The homology class of the displayed contour

is invariant (up to a reversal in orientation) under cyclic permutations of the external states.

corresponding to the physical singularity (p3 + p4 + p5)
2 → 0 in momentum space. On the

other hand, if twistors {2, 3, 4, 6} are coplanar so that

{T1 = 0} ∩ {T5 = 0} ∩ {T ·Wα = 0} 6= ∅ ,

the contour integral is clearly unaffected. This coplanarity condition corresponds to the

momentum space singularity 〈6|x63x34|3〉 → 0, which is spurious.

The six particle tree is the simplest non-trivial example of an NMHV tree amplitude

that requires a choice of contour. A contour (on the Grassmannian in ordinary twistor

space) that is appropriate for general NMHV tree amplitudes was identified in [27]. In

their notation, the (S1)m contour that computes the residue when each of the first m

minors vanishes is denoted {1}{2}{3} · · · {m}, while the sum {1}+{2}+ · · ·+{m} denotes

a single S1 contour factor that encircles the vanishing locus of all of the first m minors.

The NMHV tree amplitudes were then shown to be associated to the contour defined by

ΓNMHV
tree ≡ E ⋆O ⋆ E ⋆ · · ·

︸ ︷︷ ︸

(n−5) factors

(4.9)

where

E ≡
∑

k even

{k} and O ≡
∑

k odd

{k} (4.10)

and the star product is defined as

{i1} ⋆ {i2} ≡
{

{i1}{i2} if i1 < i2

0 otherwise.
(4.11)

A small amount of experimentation is enough to convince oneself that the same contour

prescription correctly reproduces ANMHV
n,0 /AMHV

n,0 from the momentum twistor Grassman-

nian. As a second example, when n = 8, ΓNMHV
tree becomes

ΓNMHV
8 = {2}{3}{4} + {2}{3}{6} + {2}{3}{8} + {2}{5}{6} + {2}{5}{8} + {2}{7}{8}

+ {4}{5}{6} + {4}{5}{8} + {4}{7}{8} + {6}{7}{8}
(4.12)
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and yields

R(1, 5, 6, 7, 8) +R(1, 4, 5, 7, 8) +R(1, 4, 5, 6, 7) +R(1, 3, 4, 7, 8) +R(1, 3, 4, 6, 7)

+R(1, 3, 4, 5, 6) +R(1, 2, 3, 7, 8) +R(1, 2, 3, 6, 7) +R(1, 2, 3, 5, 6) +R(1, 2, 3, 4, 5)

=
∑

3≤a<b−1≤7

R1;ab .

(4.13)

In general, (4.9) contains 1
2(n−3)(n−4) summands, each of which sets n−5 homogeneous

coordinates to zero. Under a cyclic permutation of the external legs, E ↔ O and [27] showed

that (up to a possible reversal in orientation) the homology class of this contour (and hence

the sum of residues) was unchanged. (The cyclic invariance of the tree amplitudes means

that the shift i → i−1 in contour prescriptions noticed above for the box coefficients is

irrelevant here.)

4.3 Second-order invariants for N2MHV amplitudes

N2MHV amplitudes are the first case where the full Grassmannian formula

1

(2πi)2(n−2)

∮

dµ
2∏

r=1

δ4|4(Tr · W) (4.14)

is needed (rather than just projective space). Not coincidentally, in momentum space they

also require the introduction of new, ‘second-order’ objects Rn;ab;cd, defined as

Rn;ab;cd ≡ 〈c c−1〉〈d d−1〉 δ0|4(〈ξ|xbcxcd|θdb〉 + 〈ξ|xbdxdc|θcb〉)
x2

cd〈ξ|xbcxcd|d〉〈ξ|xbcxcd|d−1〉〈ξ|xbdxdc|c〉〈ξ|xbdxdc|c−1〉 . (4.15)

with

〈ξ| ≡ 〈n|xnaxab . (4.16)

These second-order Rs are dual conformally invariant, but only become dual su-

perconformally invariant on the support of an appropriate first-order R. Accordingly,

the N2MHV tree amplitude may be writted as [6]

AN2MHV
n,0

AMHV
n,0

=
∑

2≤a,b<n

Rn;ab




∑

a<c,d≤b

Rab
n;ab;cd +

∑

b≤c,d<n

Rab
n;cd



 (4.17)

where the sums in (4.17) are taken over values of (a, b) and (c, d) in the allowed ranges

that also satisfy a < b−1, c < d−1. The superscripts indicate that we should replace

〈d| → 〈n|xnaxab or 〈c−1| → 〈n|xnaxab , (4.18)

in the boundary cases of d = b or c = b of the first and second sums, respectively. All

told, in addition to the basic Rn;ab invariants, N2MHV tree amplitudes involve three new

objects:

Rn;ab;cd , Rba
n;ab;ad and Rab

n;bd ,
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at least when written in the form of equation (4.17). Translating these to momentum

twistor space, we find13

Rn;ab;cd = R(U , c−1, c, d−1, d) ,

Rab
n;ab;cb = R(U , c−1, c, b−1, b) × ǫ(U , c−1, c, b) ǫ(b−1, a−1, a, n)

ǫ(U , c−1, c,
[
b) ǫ(b−1

]
, a−1, a, n)

Rab
n;bd = R(n, b−1, b, d−1, d) × ǫ(n, d−1, d, b−1) ǫ(b, a−1, a, n)

ǫ(n, d−1, d,
[
b−1) ǫ(b

]
, a−1, a, n)

(4.19)

where the supertwistor U is defined by

U ≡ ǫ(n, b−1, b, [a−1), a] (4.20)

and the square brackets in (4.19) and (4.20) denote antisymmetrization in the two twistors.

Of course, either in the momentum representation (4.15) or the momentum twistor repre-

sentation (4.19), many identities between second-order Rs may be inferred from different

expressions for the tree amplitude – indeed, some such identities were used in [50] to present

the N2MHV tree amplitude in a slightly different form. However, these identities are even

more algebraically intricate than they were at NMHV level! Once again, such identities

naturally arise in the Grassmannian formula via the global residue theorem (although we

do not investigate this here – see [27] for further details).

It is testament to the power of the Grassmannian generating function that it can

generate all of these apparently different objects — each of the objects in (4.19), multiplied

by their appropriate first-order R, have a common, simple origin in the Grassmannian. The

following example is indicative of the general structure. Consider the case of eight particles

where G(k, n) = G(2, 8) and has complex dimension 12. Eight of the integrals are fixed

by the δ-functions, so we need to specify a four-dimensional contour. Suppose we compute

the residue where the third, fourth, sixth and eighth cyclic minors vanish. Working on the

C
12 coordinate patch

(

T1

T2

)

=

(

1 t12 t13 t14 0 t16 t17 t18
0 t22 t23 t24 1 t26 t27 t28

)

, (4.21)

this residue is located at the intersection

{t13t24 = 0} ∩ {t14 = 0} ∩ {t16t27 − t17t26} = 0 ∩ {t28 = 0} . (4.22)

The second and fourth conditions simply set two of the ts to zero. The first condition is

quadratic; since the contour was specified by the vanishing of a polynomial in the ts, it

encircles both solutions t13 = 0 and t24 = 0 and the residues at these must be summed. The

final condition can then be solved for either t27 or t17, respectively.14 Hence, computing

13See appendix for a derivation.
14For generic external momenta, the residues vanish both t16t27 = 0 = t17t26, as the δ4|4-functions then

depend on only four twistors that are not coplanar by assumption.
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the residue at the vanishing of these minors reduces the Grassmannian to

1

(2πi)8

∮
d8t

t12t16t17t18 t22t23t24t26
δ4|4
(
A1 ·W

)
δ4|4
(
A2 · W

)

+
1

(2πi)8

∮
d8t

t13t16t18(t12t23 − t13t22)t22t26t27
δ4|4
(
B1 · W

)
δ4|4
(
B2 ·W

)
,

(4.23)

where we have defined the matrices
(

A1

A2

)

=

(

1 t12 0 0 0 t16 t17 t18
0 t22 t23 t24 1 t26 t26

t17
t16

0

)

(

B1

B2

)

=

(

1 t12 t13 0 0 t16 t16
t27
t26

t18

0 t22 t23 0 1 t26 t27 0

)

.

(4.24)

If we introduce

U = ǫ(8, 1, 2, [6), 7] and V = ǫ(5, 2, 3, [6), 7] (4.25)

the remaining integrals are fixed by the δ-functions, giving

R(8, 1, 2, 6, 7)R(U , 2, 3, 4, 5) +R(5, 6, 7, 2, 3)R(V, 8, 1, 2, 3) × ǫ(V, 8, 1, 3)ǫ(2, 6, 7, 5)
ǫ(V, 8, 1, [3)ǫ(2] , 6, 7, 5)

which we identify as R8;27R8;27;35 +R5;73R
73
5;73;13.

Similarly, computing the residue where the first, second, fifth and sixth minors vanish,

i.e. where

{t22 = 0} ∩ {t12t23 = 0} ∩ {t16 = 0} ∩ {t17t26 = 0} (4.26)

one finds non-vanishing contributions only from the two cases

t22 = t23 = t16 = t17 = 0 and t22 = t12 = t16 = t26 = 0 . (4.27)

The remaining integrals are again fixed by the δ-functions and one obtains the sum of

contributions

R(8, 1, 2, 3, 4)R(8, 4, 5, 6, 7) = R8;24R8;57 (4.28)

and

R(1, 3, 4, 7, 8)R(U , 4, 5, 7, 8) × ǫ(U , 4, 5, 8)ǫ(7, 3, 4, 1)
ǫ(U , 4, 5, [8)ǫ(7] , 3, 4, 1) = R1;48R

48
1;48;58 , (4.29)

coming from the first and second solutions, respectively.

These examples show how the Grassmannian generating function unifies the various

different types of contribution to N2MHV amplitudes. In particular, if we specialize to

pure external gluons with helicity configuration (1+, 2−, 3+, 4−, 5+, 6−, 7+, 8−), it is readily

verified that R8;24R8;35 gives (after multiplication by the MHV tree factor) the contribution

[13]4[57]4〈48〉4
[12][23][56][67]〈4|2 + 3|1]〈8|1 + 2|3]s123〈4|5 + 6|7]〈8|6 + 7|5]s567

,
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Figure 6. The four-mass box coefficient.

where s123 = (p1 + p2 + p3)
2 and similarly for s567; this is the contribution that [7] denoted

by U . Similarly, the apparently more complicated expression R5;73R
73
5;73;13 reduces to

nothing more than (minus) the conjugate term P (g4U), where g : i→ i+1 is the cyclic shift

and P is the (Minkowski signature) parity operator, exchanging primed and unprimed

spinors. Precisely these contributions to the 8-particle alternating helicity amplitude were

computed in [27] from a contour that localises on the vanishing of the first, fourth, fifth

and eighth cyclic minors of the twistor Grassmannian formula. As at NMVH, we see there

is a cyclic shift

ihere → i−1there

in the contour prescriptions, for the same labelling of external states. A contour that

generates the complete 8-particle N2MHV tree amplitude for this helicity configuration

was given in [27].

4.4 The four-mass box coefficient

A particularly important dual superconformal invariant, that first becomes relevant at

N2MHV, is the coefficient of the 4-mass box function. This was computed in [11, 12] to

be where (as indicated) ℓ3 and ℓ4 are the momenta flowing along the (cut) propagators

between legs t−1 and t, and legs u−1 and u, respectively. The sum is taken over the two

solutions of the quadruple cut equations

x2
0r = 0 , x2

0s = 0 , x2
0t = 0 , x2

0u = 0 . (4.30)

The dual superconformal invariants R̂ℓ3;tsuR̂ℓ4;urt depend on the cut loop momenta and

were defined in [11] by

R̂ℓ3;tsu ≡ 〈s−1 s〉〈u−1u〉 δ0|4(Ξ̂ℓ3;tsu)

x2
su〈ℓ3|xtuxus|s−1〉〈ℓ3|xtuxus|s〉〈ℓ3|xtuxus|u−1〉〈ℓ3|xtsxsu|u〉

, (4.31)

where

Ξ̂ℓ3;tsu ≡ x2
su〈ℓ3|θt〉 + 〈ℓ3|xtsxsu|θu〉 + 〈ℓ3|xtuxus|θs〉 (4.32)

and similarly for R̂ℓ4;urt.
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As is well-known, the quadruple cut of the 4-mass box fixes the loop momenta in terms

of a quadratic expression in the external momenta, so (4.31) is not a rational function of the

external spinors (although the overall box coefficient itself is). The presence of the radicals

in R̂ℓ3;tsu and R̂ℓ4;urt is a tell-tale sign of the 4-mass box coefficient, providing a clear signal

that one is studying a leading singularity of a loop expression, rather than merely a com-

bination of terms in the BCFW decomposition of a tree. It is thus particularly important

to show that these quadratic expressions can be obtained from the dual superconformal

Grassmannian in momentum twistor space. We now examine this in some detail. Although

we do not derive one of the standard formulae for the required box coefficient from our

Grassmannian formula, there are many different representations of such terms arising from

different choices of ordering in solving the equations that arise, and we believe our formula

to be just such a new representation.

In the simplest case of eight particles (with r = 2 in the above diagram), [27] identified

this box coefficient as the residue of a contour encirling the subvariety where the even

cyclic minors vanish. Once again, we will show that an analogous contour is appropriate

also in momentum twistors. Note that because [27] were dealing with 4 × 4 determinants,

the residues from the Grassmannian formula could only be computed numerically; here the

minors are 2 × 2 determinants, making it feasible to do the calculation analytically, thus

clarifying much of the geometric structure.

Working on the same coordinate patch (4.21) as in section 4.3, choose the contour that

localises the integrand on the subvariety where the odd cyclic minors

t22 , (t13t24 − t14t23) , t16 and (t17t28 − t18t27)

vanish. The Grassmannian integral reduces to

1

(2πi)8

∮
d8t

t12t13t17t18 t23t24t26t27
δ4|4
(
C1 · W

)
δ4|4
(
C2 · W

)
, (4.33)

where (

C1

C2

)

=

(

1 t12 t13 t14
t23
t24

0 0 t17 t18

0 0 t23 t24 1 t26 t27 t27
t18
t17

)

. (4.34)

As before, we introduce two supertwistors A = (A,χA) and B = (B,χB) by

A ≡ W3 +
t24
t23

W4 and B ≡ W7 +
t18
t17

W8 (4.35)

so that the δ-functions fix the remaining variables to be

t12 =
ǫ(A, 7, 8, 1)

ǫ(2, A, 7, 8)
, t13 =

ǫ(7, 8, 1, 2)

ǫ(2, A, 7, 8)
, t17 =

ǫ(8, 1, 2, A)

ǫ(2, A, 7, 8)
, t18 =

ǫ(1, 2, A, 7)

ǫ(2, A, 7, 8)

t23 =
ǫ(4, 5, 6, B)

ǫ(6, B, 3, 4)
, t24 =

ǫ(5, 6, B, 3)

ǫ(6, B, 3, 4)
, t26 =

ǫ(B, 3, 4, 5)

ǫ(6, B, 3, 4)
, t27 =

ǫ(3, 4, 5, 6)

ǫ(6, B, 3, 4)

(4.36)

at the expense of a Jacobian factor [ǫ(2, A, 7, 8)ǫ(6, B, 3, 4)]−1 . Combining all the pieces,

the integral (4.33) becomes
∑

R(7, 8, 1, 2,A)R(3, 4, 5, 6,B) , (4.37)
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where the sum is over the two solutions for {A,B} that we find below.

Let us see how this relates to the known formula in figure 6. We first show that [A∧B]

corresponds to a solution of the quadruple cut equations (4.30). For this to be true, we

must have

ǫ(A,B, 1, 2) = 0 , ǫ(A,B, 3, 4) = 0 , ǫ(A,B, 5, 6) = 0 , ǫ(A,B, 7, 8) = 0 (4.38)

so that [A ∧B] intersects the four lines [1 ∧ 2], [3 ∧ 4], [5 ∧ 6] and [7 ∧ 8] corresponding to

x2, x4, x6 and x8. The second and fourth equalities in (4.38) follow because A is a linear

combination of W 3 and W 4, and B is likewise a linear combination of W 7 and W 8. The

first two follow upon using the ratios t26/t25 and t17/t18 given in (4.36). Hence [A ∧ B]

indeed corresponds to x0 on a quadruple cut.

In fact, one can say more. The displacement formula (2.19) shows that

ℓ2 ≡ x0 − x4 = IαβI
γδ ǫ

β( · , 3, 4, A)Bδ − ǫβ( · , 3, 4, B)Aδ

〈34〉〈AB〉

= IγδAδ

(
µ3〈4B〉 + µ4〈B3〉 + µB〈34〉

〈34〉〈AB〉

) (4.39)

so that the unprimed spinor part of ℓ2 (evaluated on the quadruple cut) is just the unprimed

spinor part of A. Likewise, one can show that the unprimed spinor part of ℓ4 ≡ x0 − x8 is

just IαβBβ. Writing

A = W3 + aW4 and B = W7 + bW8 (4.40)

and substituting into the cut equations ǫ(A,B, 1, 2) = 0 and ǫ(A,B, 5, 6) = 0 shows that

the ratio a = t24/t23 solves the quadratic equation αa2 + βa+ γ = 0 with coefficients

α = ǫ(4, 5, 6, [8)ǫ(7], 1, 2, 4)

β = ǫ(3, 5, 6, [8)ǫ(7], 1, 2, 4) + ǫ(4, 5, 6, [8)ǫ(7], 1, 2, 3)

γ = ǫ(3, 5, 6, [8)ǫ(7], 1, 2, 3)

(4.41)

while
t18
t17

=
ǫ(7, 1, 2, 3) + aǫ(7, 1, 2, 4)

ǫ(1, 2, 3, 8) + aǫ(1, 2, 4, 8)
. (4.42)

We have checked that the discriminant of the quadratic (4.41) is proportional to J .

We have therefore shown that, with the choice of the cycle in G(2, 8) corresponding

to the vanishing of the even cyclic Plücker coordinates, we obtain a simple expression

that has the right properties to be the four-mass box coefficient: it is manifestly dual

conformal invariant and depends on the external momenta through
√
J . Although we have

not proved the full validity of (4.38), we also remark that performing the calculation in a

different coordinate patch leads to the formula

∑

R(X, 3, 4, 7, 8)R(Y, 1, 2, 5, 6) × ǫ(1, 2, 5, 6)ǫ(3, 4, 7, 8)

ǫ(1, 2, 5, 6)ǫ(3, 4, 7, 8) − ǫ(3, 4,X, 7)ǫ(6, Y, 1, 2)
, (4.43)
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where

X ≡ W5 +
t26
t25

W6 and Y ≡ W8 +
t17
t18

W7 . (4.44)

with t26/t25 and t17/t18 determined by substitution into

t13 =
ǫ(4,X, 7, 8)

ǫ(X, 7, 8, 3)
, t15 =

ǫ(7, 8, 3, 4)

ǫ(X, 7, 8, 3)
, t17 =

ǫ(8, 3, 4,X)

ǫ(X, 7, 8, 3)
, t18 =

ǫ(3, 4,X, 7)

ǫ(X, 7, 8, 3)
,

t22 =
ǫ(5, 6, Y, 1)

ǫ(2, 5, 6, Y )
, t25 =

ǫ(6, Y, 1, 2)

ǫ(2, 5, 6, Y )
, t26 =

ǫ(Y, 1, 2, 5)

ǫ(2, 5, 6, Y )
, t28 =

ǫ(1, 2, 5, 6)

ǫ(2, 5, 6, Y )
.

(4.45)

Since (4.38) and (4.43) are related by a GL(2) transformation of the Grassmannian, they

must be equivalent. We can identify

R(X, 3, 4, 7, 8)R(Y, 1, 2, 5, 6) = R̂ℓ3;648R̂ℓ4;826 (4.46)

which are the same R̂ invariants as in figure 6. This nevertheless demonstrates that there

are many distinct expressions for the same quantity and that our formulæ have many of

the required properties.

4.5 All-loop information

In [27], Arkani-Hamed et al. made the bold conjecture that the Grassmannian generating

function really probes all-loop information. This claim was based on the fact that in general

there are more inequivalent, non-trivial contour choices than are required to reproduce the

tree amplitude and 1-loop box coefficients. For example, even at NMHV level (where there

are no composite residues) there are

(

n

5

)

contour choices,

but only

n(n− 5)(n − 6)

2
+
n(n− 5)

2
=
n(n− 4)(n− 5)

2
3-mass + 2-mass-hard box functions,

in terms of which all the other NMHV box coefficients may be determined [49]. Thus,

for n ≥ 8, the Grassmannian formula contains further information, which [27] conjectured

should be identified with leading singularities [32–36] of higher-loop processes. Conversely,

when n ≤ 7 every choice of contour corresponds to some combination of 1-loop box coef-

ficients, and [27] then conjectured that no new conformal invariants would be required to

describe higher-loop leading singularities of NMHV amplitudes with n ≤ 7.

We do not explore this fascinating conjecture further here, but merely point out that

every contour choice made in [27] may also be made here, again leading to information that

is not required at 1-loop. The close correspondence of the twistor and momentum twistor

Grassmannian formulæ — particularly the fact that they both probe residues on isomorphic

subGrassmannians G(k, n − 4) – suggests that for every possible choice of contour (after

a cyclic shift in the minors) they both compute the same object. The two Grassmannian
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formulæ then make both superconformal15 and dual superconformal symmetry manifest,

together with the dihedral symmetry of the colour-ordered amplitudes.

4.6 MHV amplitudes

For MHV amplitudes (k = n − 4), the δ-functions saturate the integral and no extra

contour need be specified. However, since we are working in a chiral framework, the MHV

amplitudes are not trivial in momentum twistor space (unlike the MHV amplitudes). Using

the coordinate patch





T1

...

Tn−4




 =






1 · · · 0 t1n−3 t
1
n−2 t

1
n−1 t

1
n

...
. . .

...
...

...

0 · · · 1 tkn−3 t
k
n−2 t

k
n−1 t

k
n




 (4.47)

the δ-functions enforce

trn−3 =
ǫ(n−2, n−1, n, r)

ǫ(n−3, n−2, n−1, n)
trn−2 =

ǫ(r, n−3, n−1, n)

ǫ(n−3, n−2, n−1, n)

trn−1 =
ǫ(n−3, n−2, n, r)

ǫ(n−3, n−2, n−1, n)
trn =

ǫ(r, n−3, n−2, n−1)

ǫ(n−3, n−2, n−1, n)

(4.48)

for r = 1, . . . , k = n− 4. Plugging these values into the cyclic minors, one finds after some

algebra that

AMHV
n,0

AMHV
n,0

=

n∏

k=1

1

ǫ(k, k+1, k+2, k+3)

∏n−4
i=1 δ

0|4(χiǫ(i+1, i+2, i+3, i+4) + cyclic)
∏n−4

j=2 ǫ(j, j+1, j+2, j+3)4
(4.49)

in momentum twistor space. The first product is manifestly cyclic. The remaining factors

can also be shown to be cyclically invariant, with the denominator acting as a Jacobian

to compensate for the cyclic shift of the fermionic δ-functions in the numerator. We have

checked for n ≤ 7 that (4.49) agrees with the momentum space expression given in [6].

5 Polytopes

The dual superconformal invariants relevant for NMHV tree amplitudes have been previ-

ously studied in momentum twistor space by Hodges [28]. In this section we make a formal

connection between our Grassmannian approach and ref. [28]. We first give a brief review

of Hodges’ essential ideas. In his picture, each basic invariant R(a, b, c, d, e) is interpreted

as the ‘holomorphic volume’ of a certain 4-simplex in16 dual momentum twistor space with

coordinates ZI :

R(1, 2, 3, 4, 5) =

∫

simplex
d4|4Z . (5.1)

15As mentioned in section 2.4, the necessity of using (2,2) signature space-time to implement Witten’s

half-Fourier transform somewhat clouds the issue of usual superconformal invariance in twistor space. See

also [51, 52], where the full scattering operator (rather than n-particle components in a Fock basis) is shown

to be superconformally invariant.
16With Penrose conventions, the twistor space with coordinates Zα would usually be taken as primary,

and the Wα space referred to as ‘dual’. This unfortunately clashes with the prevalent conventions in

perturbative gauge theory, whereby MHV amplitudes involve unprimed/undotted spinors |λ〉 and so live

most naturally on Penrose’s dual space.
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Vertex becomes spurious

New boundary

on Z · W
6 = 0

Add sixth particle

Figure 7. Adding a new particle truncates the previous polytope along a new plane, shown here

for 5 → 6 particles, projected into the plane Z ·W 5 = 0. The vertex where planes Z ·W 5 = 0,

Z ·W 1 = 0, Z ·W 2 = 0 and Z ·W 3 = 0 meet becomes spurious when particle 6 is added, and the

volume of the resulting polytope stays finite even when this vertex moves to infinity.

Here, the integral is a real 4|4-dimensional integral over a contour in C
4|4, where the contour

has boundary on the simplex whose facets (codimension-one faces) are the planes

ZIWj
I = 0 for j = 1, . . . , 5 (5.2)

determined by the external twistors Wi.

The power of this interpretation is that one can understand why it is natural to consider

sums of R-invariants with equal coefficients, such as arise in the NMHV tree amplitude:

the sum is simply the (oriented) volume of the polytope made up from the union of the

elementary simplices (with appropriate signs). For example, the BCFW sum

ANMHV
6,0

AMHV
6,0

= R(1, 2, 3, 4, 5) −R(3, 4, 5, 6, 1) +R(5, 6, 1, 2, 3) (5.3)

corresponds to the volume of a 6-sided polytope with dihedral symmetry. The BCFW rep-

resentation is obtained by dividing up the polytope into elementary simplices R(a, b, c, d, e).

However, such decompositions are not unique, and the decomposition obtained by a cyclic

shift of (1, 2, 3, 4, 5, 6) yields the alternative BCFW formula

ANMHV
6,0

AMHV
6,0

= −R(2, 3, 4, 5, 6) +R(4, 5, 6, 1, 2) −R(6, 1, 2, 3, 4) (5.4)

for the same volume. In the case of the split helicity amplitude, one of the terms vanishes

and we can reduce to a 3-dimensional picture in which the new bounding plane slices off

one of the vertices (see figure 7).

The spurious singularities inherent in the BCFW decomposition of an amplitude may

be understood from this picture. The polytope’s volume diverges if any of its vertices move

away to infinity — this occurs when any four twistors W i become coplanar, so that the

four corresponding facets meet at infinity. Such a singularity is physical when the four
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twistors form two consecutive pairs; if the pairs are {W i−1,W i} and {W j−1,W j} the pole

corresponds to the singularity

(pi + . . .+ pj)
2 → 0 (5.5)

of the amplitude. By construction, all the vertices of the full polytope (characterising the

overall amplitude) are of this form. However, any BCFW decomposition also contains spu-

rious singularities, corresponding to vertices where four ‘non-pairwise consecutive’ facets

meet — in slicing up the polytope to obtain a BCFW decomposition, one necessarily in-

troduces new vertices, that may be either internal or external to the full polytope. The

volumes of the individual elementary simplices of the decomposition depend on the posi-

tions of these spurious vertices, and accordingly they have spurious singularities as these

vertices move away to infinity (see figure 7).

We would now like to understand the relation of Hodges’ polytopes to the Grassman-

nian contour integral

Rk,n =

∮

Γ⊂G(k,n)
dµ

k∏

r=1

δ4|4(Tr·W) (5.6)

We first discuss the basic 5-twistor R-invariant, making contact with the real, split signature

version of the Grassmannian formula (2.50) in a very formal fashion. In this case we can

take the Wi to be real and the contour is required to lie in the real twistor space. To

incorporate the contour into the integral, we introduce step functions

θ(x) ≡ 1

2πi

∫

e−iTx dT

T + iε
=







1 for x > 0
1
2 for x = 0

0 for x < 0

. (5.7)

This can be used formally to determine the simplex by writing our integral as

∫

simplex
d4|4Z =

∫

d4|4Z
5∏

i=1

θ(Wi · Z)

=

∫

d4|4Z
5∏

i=1

e−iTiWi·Z dTi

Ti + iε

=

∫ 5∏

i=1

dTi

Ti + iε
δ4|4

(
5∑

i=1

TiWi

)

(5.8)

where in the second line we have simply substituted in the definition of the step func-

tions (5.7) and in the last line we have integrated out Z, obtaining the δ-functions. This

has one more integral than there are bosonic δ-functions. The homogeneity of the δ-function

allows us to factor out an overall scale, say T1. Writing ti = Ti/T1 for i = 2, . . . , 5 we can

rewrite the last integral as

∫
dT1

T1 + iε

5∏

i=2

dti
ti + iε/T1

δ4|4

(

W1 +

5∑

i=2

tiWi

)

. (5.9)
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Since the ti are now to be integrated against δ-functions, the regularization +iε/T1 is

immaterial — in particular its T1 dependence can be ignored. The T1 integral can therefore

be performed directly, giving an overall factor of 1/2 and we obtain the formula for the

dual conformal invariant (2.50), up to an overall sign.

This calculation is formal in two related respects. Firstly, we have not obtained the

required sign factor sgn(ǫ(2, 3, 4, 5)) and secondly, the region of integration in (5.8) depends

on the signs of the Wi. Let us give a brief sketch of the ideas required to put this calculation

on a firmer footing.

Hodges’ contour — the simplex in (5.1) — can be parametrized explicitly using real

bosonic parameters λi (with i = 1, . . . 5) and real fermionic parameters ψ as

Z =

5∑

i=1

λi(Vi, ψ) , where λi > 0 and
∑

λi = 1 (5.10)

and Vi = (V α
i , ψ

a
i ) are the coordinates of the vertices of the simplex. The bosonic vertex

coordinates Vi are determined in terms of ψ and the external twistors Wj by solving the

four equations

0 = Vi · Wj = V α
i W

j
α + ψaχj

a when i 6= j . (5.11)

For example,

V α
1 = − ψa

ǫ(2, 3, 4, 5)

(
χ2

aǫ
α( · , 3, 4, 5) + cyclic

)
. (5.12)

while the remaining Vi are related to this by cyclic permutations. Thus we can write

λi =
Z ·Wi

Vi · Wi
(5.13)

(where the dot product indicates contraction over the supertwistor indices). Therefore the

appropriate integral for the supersymmetric volume of the simplex is

∫

d4|4Z
5∏

i=1

θ(λi) (5.14)

This resolves the dependence on the signs of Wi (the λi are weightless in Wi) and introduces

the additional sign factors in the final formula. The ideal derivation would lead directly to

the holomorphic formula (2.48), either via contour integrals or the Dolbeault form for R1,5.

For the polytopes appropriate to NMHV amplitudes with more than 5 points, we

simply introduce additional factors of θ(λi), one for each new particle. In the formal

calculation it is clear that this leads to the expression

∫ n∏

i=1

dTi

Ti + iε
δ4|4(T · W) . (5.15)

There are n − 4 more integrals than δ-functions, so these integrals must be done in the

Ti parameter space (the non-projective Grassmannian) as the delta function parts of the

1/t+ iǫ distribution.
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We have therefore seen that in formal terms, the relationship between our intgrals over

projective space for NMHV amplitudes and Hodges volumes of polytopes in dual momen-

tum twistor space can simply be understood via the Fourier transform from momentum

twistor space to dual momentum twistor space in a totally real formulation. For NkMHV,

it is clear that this idea can be extended by expressing each delta function as an integral

over dual momentum twistors space leading to an integral over the (k − 2)-fold cartesian

product of such dual momentum twistor spaces. The conversion of the T -integrals into

step functions on this space is no longer so clear because the denominators are no longer

simple factors, so the geometric interprestation is less clear.

6 Discussion

In this paper, we have translated the various dual conformal invariants into momentum

twistor space — the twistor space of region momenta. We have shown that these invariants

are naturally generated by the remarkable contour integral

1

(2πi)k(n−k)

∮

dµ
k∏

r=1

δ4|4(Tr · W) , (6.1)

where, after performing the integrals over the δ-functions, the contour is taken to be a

suitable cycle in G(k, n − 4). This formula makes manifest both dual superconformal

invariance and (at least for appropriate choices of contour) the dihedral symmetry of the

colour-ordered amplitude. More importantly, the possibility of enclosing several poles with

the same contour allows one to take sums of dual superconformal invariants with equal

coefficients (up to sign). Similarly, although we have not emphasised this point in the

present paper, higher-dimensional versions of Cauchy’s theorem provide a natural way

to understand the many identities that these sums of invariants obey — identities that

become ever more algebraically involved as (n, k) increase. A loose end in our discussion is

the identification of the N2MHV 4-mass box coefficient, where we have not yet been able

to prove that our formula agrees with the formula in [11, 12].

There are many other questions that this work leaves open. Firstly, our Grassmannian

formula (6.1) is clearly analogous to the Grassmannian generating principle found by

Arkani-Hamed et al. in [27] that naturally lives in ordinary twistor space. As we have seen,

this analogy extends even to the specification of the appropriate contours at the zero sets

of the cyclic Plücker coordinates. This obviously deserves a more direct understanding.

Clearly, one can mechanically translate between amplitudes on ordinary twistor space and

on momentum twistor space by first using Witten’s half-Fourier transform [48] and then

performing the algebraic change of variables we have explored in this paper. However,

we feel that there should be a more direct relationship between the two twistor spaces,

that does not require translating via momentum space. Could it be that the usual and

momentum twistor spaces are T-dual? We have recently heard17 that it is possible to

demonstrate a direct correspondence between the integrals over cycles in these two distinct

17Arkani-Hamed and Cachazo, private communication
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Grassmannians. (In particular, this correspondence demonstrates the validity of our

N2MHV box coefficient).

The present paper has been concerned with tree amplitudes and leading singularities

of loop amplitudes. However, it is natural to wonder whether it is possible to ‘dress’ (either

of the) Grassmannian integrals so as to obtain the loop amplitudes proper. In this regard,

we would like to point out that it is straightforward to translate the scalar box integrals

to momentum twistor space. For example, a generic 1-loop scalar box integral may be

regularized by the Feynman iε-prescription18

Iε
rstu =

∫
d4x0

(x2
0r + iε)(x2

0s + iε)(x2
0t + iε)(x2

0u + iε)
, (6.2)

with limε→0 finite only for the four-mass box. The standard form (2.12) of the metric in

twistor variables shows that this integral may be written as

∮
D3U ∧D3V 〈r−1 r〉〈s−1 s〉〈t−1 t〉〈u−1 u〉

(ǫ(U, V, r−1, r) + iε〈UV 〉〈r−1 r〉) · · · (ǫ(U, V, u−1, u) + iε〈UV 〉〈u−1 u〉) (6.3)

in momentum twistor space, where [U ∧ V ] is the line in twistor space corresponding to

the point x0, D
3U is the canonical holomorphic measure of weight +4 on CP

3 and the

contour is the diagonal ∆ ⊂ CP
3 × CP

3. The challenge here is to combine (6.3) with (6.1)

in a way that does not ruin all the beautiful properties (6.1) possesses. In particular, one

would not wish to follow the usual line of simply multiplying a box coefficient (obtained by

imposing some particular contour on (6.1)) by its corresponding box function (written as

in (6.3)), and then summing over boxes. Such an approach undoes one of the main benefits

of the Grassmannian — that identities such as mysterious combinations of box functions

being IR finite can be understood [27] via the global residue theorem! Presumably, a

successful unification will involve thinking of the box coefficients as leading singularities

of a true loop amplitude; that is, the leading singularity is an evaluation of the usual

loop amplitude over a T 4ℓ contour that encircles the poles of the propagators (and ‘hidden

propagators’ [32, 33]) in the space C
4ℓ of complex momenta, rather than the usual R

4ℓ

contour. Similarly, the Grassmannian generating function (6.1) should itself emerge as the

leading singularity of some larger object that depends on some internal twistors and knows

about the full amplitude.

In section 5 we used real methods such as the Fourier transform to express the δ-

functions as integrals over regions in the dual momentum twistor space. This led us to

Hodges’ picture [28] of amplitudes as volumes of polytopes. Our investigation used a

representation of the dual conformal invariants in real twistor space; it would be useful to

have a proof that is truer to the more appropriate holomorphic objects used in the rest of

this paper. Such a proof should be based on contour integrals and the twistor transform

rather than the Fourier transform. However, this requires a better understanding how to

use twistor elemental states, introduced in [24] in the complex setting. Nevertheless, this

real approach is sufficient for us to see that the extension of Hodges’ approach to NkMHV

18We particularly thank Andrew Hodges and James Drummond for discussions of this point.
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will not have such a simple interpretation as for NMHV since, although the same idea

can be used to express terms in the BCFW decomposition of an NkMHV amplitude as

integrals over the (k − 2)-fold product of dual twistor space, the integrand will no longer

be expressible as a straightforward product of step functions. It will be interesting to see

whether one can nevertheless turn this picture into a useful formulation. Certainly, Hodges’

original formulation for NMHV amplitudes gave a beautiful geometric intepretation of the

full NMHV amplitude that promises more for the full amplitude.
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A Higher-order invariants

In this appendix we translate the higher-order dual conformal invariants Rn;a1b1;a2b2;...;arbr ;ab

into momentum twistor space. These play a role in Nr+1MHV amplitudes for r ≥ 1 and

were defined in [6] by19

Rn;a1b1;a2b2;...;arbr ;ab ≡
〈a a−1〉〈b b−1〉 δ0|4(〈ξ|xaraxab|θbar〉 + 〈ξ|xarbxba|θaar〉)

x2
ab〈ξ|xarbxba|a−1〉〈ξ|xarbxba|a〉〈ξ|xaraxab|b−1〉〈ξ|xaraxab|b〉

(A.1)

where

〈ξ| ≡ 〈n|xnb1xb1a1xa1b2 · · · xbrar . (A.2)

Using (2.19), it is straightforward to see that 〈ξ| = IαβUβ, where

Uσ ≡ nα

(
[n−1 ∧ n]

〈n−1 n〉 − [b1−1 ∧ b1]
〈b1−1 b1〉

)αβ ( [b1−1 ∧ b1]
〈b1−1 b1〉

− [a1−1 ∧ a1]

〈a1−1 a1〉

)

βγ

×
(

[a1−1 ∧ a1]

〈a1−1 a1〉
− [b2−1 ∧ b2]

〈b2−1 b2〉

)γδ

· · ·
(

[br−1 ∧ br]
〈br−1 br〉

− [ar−1 ∧ ar]

〈ar−1 ar〉

)

ρσ

=
ǫ(n, b1−1, b1, [a1−1)ǫ(a1], b2−1, b2, [a2−1) · · · ǫ(ar−1], br−1, br, [ar−1), ar]σ

〈b1−1 b1〉〈a1−1 a1〉〈b2−1 b2〉〈a2−1 a2〉 · · · 〈br−1 br〉〈ar−1 ar〉
(A.3)

19Following [50], we have slightly rearranged the indices of these invariants compared to their original

definition in [6], so that Rn;ab is naturally the r = 0 case of the general structure.
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where in the first line, indices are raised with the totally-skew ǫ-symbol and [n−1 ∧ n]αβ

denotes the skew twistor W n−1
[α W n

β] (the line through twistors n−1 and n), while in the

second line, the square brackets again denote antisymmetrization. The denominator may

now be translated exactly as for the basic invariant, with the replacement W n → U .

Similarly, we can use the identity

〈ξ|xaraxab|θbar 〉 + 〈ξ|xarbxba|θaar 〉 = x2
ab〈ξ|θar 〉 + 〈ξ|xaraxab|θb〉 + 〈ξ|xarbxba|θa〉 (A.4)

to translate the numerator. Just as in (2.35), the final two terms become

〈ξ|xaraxab|θb〉 →
ǫ(U, a−1, a, b−1)χb − ǫ(U, a−1, a, b)χb−1

〈a−1 a〉〈b−1 b〉 (A.5)

and similarly for 〈ξ|xarbxba|θa〉. The remaining term involves

〈ξ|θar〉 = IρσUρ

(
χar−1W ar

σ − χarW ar−1
σ

〈ar−1 ar〉

)

. (A.6)

Equation (A.3) shows that Uρ == αW ar
ρ − βW ar−1

ρ , so this is simply

χU ≡
(
αχar−1 − βχar

)
, (A.7)

where the definition of χU is motivated by the fact that it has exactly the same form (A.3)

as the bosonic twistor Uα, but with the free index being the fermionic part of the final

supertwistor. We thus find

x2
ab〈ξ|θar〉 =

ǫ(a−1, a, b−1, b)

〈a−1 a〉〈b−1 b〉 χ
U . (A.8)

It is natural to extend U to a supertwistor UI = (Uα, χ
U
a ), whereupon the higher-order

dual conformal invariants (A.1) take exactly the same form in momentum twistor space as

the first-order R-invariants, except with Wn → U . Explicitly,

Rn;a1b1;a2b2;...;arbr ;ab = R(U , a−1, a, b−1, b) (A.9)

as used in section 4.3. The ‘boundary terms’ in Drummond and Henn’s solution may be

handled similarly.
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